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Abstract

Background: Several studies in the new field of cognitive epidemiology have shown that

higher intelligence predicts longer lifespan. This positive correlation might arise from

socioeconomic status influencing both intelligence and health; intelligence leading to bet-

ter health behaviours; and/or some shared genetic factors influencing both intelligence

and health. Distinguishing among these hypotheses is crucial for medicine and public

health, but can only be accomplished by studying a genetically informative sample.

Methods: We analysed data from three genetically informative samples containing infor-

mation on intelligence and mortality: Sample 1, 377 pairs of male veterans from the

NAS-NRC US World War II Twin Registry; Sample 2, 246 pairs of twins from the Swedish

Twin Registry; and Sample 3, 784 pairs of twins from the Danish Twin Registry. The age

at which intelligence was measured differed between the samples. We used three meth-

ods of genetic analysis to examine the relationship between intelligence and lifespan: we

calculated the proportion of the more intelligent twins who outlived their co-twin; we re-

gressed within-twin-pair lifespan differences on within-twin-pair intelligence differences;

and we used the resulting regression coefficients to model the additive genetic covari-

ance. We conducted a meta-analysis of the regression coefficients across the three

samples.
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Results: The combined (and all three individual samples) showed a small positive pheno-

typic correlation between intelligence and lifespan. In the combined sample observed

r¼ .12 (95% confidence interval .06 to .18). The additive genetic covariance model sup-

ported a genetic relationship between intelligence and lifespan. In the combined sample

the genetic contribution to the covariance was 95%; in the US study, 84%; in the Swedish

study, 86%, and in the Danish study, 85%.

Conclusions: The finding of common genetic effects between lifespan and intelligence

has important implications for public health, and for those interested in the genetics of

intelligence, lifespan or inequalities in health outcomes including lifespan.

Introduction

In 1991, a study of the health of British civil servants

showed that even under nationalized health care, and

among the employed, people at the bottom of the job hier-

archy have an annual 3-fold higher risk of all-cause mortal-

ity compared with those at the top.1 A similar positive

association with mortality has been reported for measured

intelligence. A population study of people born in Scotland

in 1921 showed that intelligence measured at age 11 pre-

dicted survival to age 76.2 The same intelligence-lifespan

association has now been replicated in other studies.3

These findings have given rise to a large literature on

mortality inequalities, and the associations among intelli-

gence, socioeconomic status, health behaviours and

lifespan.4,5 What causes the relationship between intelli-

gence and lifespan? Factors such as rearing environment,

family income, schooling, lifestyle choices, or constraints

such as diet, exercise, accidents, illnesses,2,5 may each play

a role.

There are several mutually compatible explanations for

the covariance between intelligence and lifespan. Higher

intelligence could cause longer lifespan through mediators

such as higher income, safer employment or better health

choices. Although early rearing is important,6 there is good

evidence that, within the normal range of families, rearing

environments do not explain the variation among people

in intelligence measured after adolescence.4,7,8 So

the shared environment—what makes people within a fam-

ily more similar to one another and contributes to

between-family differences—is an unlikely cause of the co-

variance between the two traits, intelligence and lifespan.

Perhaps more likely is that shared genetic factors may act

on both traits. Analytical designs that test between mono-

zygotic (MZ) twins that share all their segregating genes

and dizygotic (DZ) twins that share around half their

genes, are useful to probe the covariance between intelli-

gence and lifespan.7 If shared genetic factors influence

both traits,8,9 we should see a positive association between

intelligence and lifespan differences within DZ twin pairs.

Differences within DZ twin pairs are due to genes and indi-

vidual-specific non-genetic factors that may influence both

intelligence and lifespan. But we would not expect to see

an association between intelligence and lifespan differences

within MZ twin pairs (who like DZ twins are also matched

on rearing environments) but whose differences are due

only to individual-specific non-genetic factors. These are,

of course, not the only possible set of relationships.

Evidence of gene-environment correlations10,11 prepares us

to expect that genes contributing to intelligence may be

associated with environments that promote health. Genes

that contribute to good cognitive abilities may also influ-

ence health-promoting decision making.

We turned to the most revealing datasets we could iden-

tify to test the weight of the available evidence—these are

twin samples where both intelligence and mortality have

been recorded and where at least one twin within a pair

had died. Our objective was to discover whether there is

any evidence that genetic factors directly influence the

Key Messages

• It has been reported that brighter people live longer; we asked ‘why?’.

• We found, using data from three studies, that the small association between being brighter and living longer was

mostly genetic in origin.

• This is a key finding in cognitive epidemiology; it is a further indication that intelligence is not just ‘school-smarts’.

International Journal of Epidemiology, 2016, Vol. 45, No. 1 179

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/45/1/178/2363476 by guest on 10 April 2024



covariance of intelligence and mortality. In our results and

discussion we refer to lifespan rather than ‘mortality’ to

avoid repeated negatives (as in ‘higher intelligence is nega-

tively correlated with mortality’).

Methods

Samples

Study 1: US Military veteran sample

The NAS-NRC Twin Registry of WWII male veterans in

the USA was initially compiled by matching records of

multiple births, from 1917 to 1927 in 42 states, with mili-

tary service records. The current sample included 377 (201

MZ) twin pairs whose military entrance examination

scores were available and at least one member of the

twin pair was deceased. At the time of enlistment in the

military, each man (aged between 18 and 25 in the 1940s)

took an entrance test [either the Army General

Classification Test (AGCT) or the General Classification

Test (GCT)]. Our sample comprised 579 men who had

died by 2009, as well as 175 living men. Among 202

pairs, both twins had died (mean age of death 72, range

43–92 rounded). In 175 pairs, one twin had died (mean

age of death 77, SD 5.4, minimum 64, maximum 88).

Where one member was alive, we imputed his life expect-

ancy based on a life table.12 If both twins were living, the

actuarial estimated life expectancy would have been the

same for both twins, ruling out any life expectancy

differences.

Study 2: Swedish twin sample

We examined data from 790 men and women from the

Swedish Adoption/Twin Study of Aging (SATSA) for

whom general intelligence test scores were available based

on completion of multiple cognitive tests. Mortality data

were collected in May 2014 from a national death registry.

Within this sample of same-sex twins, we selected only the

twin pairs in which at least one person had died, yielding

246 pairs (111 male pairs, 135 female pairs, 100 MZ), all

born between 1900 and 1939. Among 164 pairs, both

twins had died (mean age of death 84, range 59–104

rounded). In 82 pairs, one twin had died (mean age of

death 77, minimum 57, maximum 105). For the surviving

twins, we imputed a date of death. Statistics Sweden pro-

vided current life tables from which we could calculate the

actuarial life expectancy for each living twin.13 The index

of intelligence in our analyses was the first unrotated prin-

cipal component extracted from the scores of 12 verbal

and non-verbal tests of cognitive ability. The minimum re-

cruitment age was 50; the cognitive tests were administered

at a mean age of 66 years.

Study 3: Longitudinal Study of Aging in Danish Twins

sample (LSADT)

This population-based sample is a subset from the oldest

nationwide twin registry: the Danish Twin Registry.14 The

study comprises 784 male and female twin pairs (305 MZ

pairs) born between 1920 and 1930. Twins entered the

study having survived to at least age 70. Mortality was es-

tablished in 2012. We included only complete pairs of

twins, and those pairs where at least one member of the

pair had died. In 451 pairs, both twins had died (mean age

of death 85, range 72–104 rounded). In 333 pairs, one

twin had died (mean age of death 81, SD 5.4, minimum

71, maximum 96). Where one twin was alive we imputed

their life expectancy from a Danish life table, by sex and

birth year.15 Sixteen individuals (aged> 93 years) exceeded

their actuarial life expectancy within the study, so their

current age was retained. Intelligence was indexed by a

composite score derived from the following five tests:

Fluency, Digit forwards, Digit backwards, Immediate re-

call and Delayed recall.16 Cognitive abilities were assessed

at a mean age of 76.

Sex differences

In all three samples, the available data included only same-

sex twins. During data preparation the main effect of sex

was tested in an ANOVA on the absolute life expectancy

differences in the Swedish and Danish samples.

Analysis

We conducted the same analyses on the combined samples

(using z-scores), and on all three samples separately (avail-

able as Supplementary data at IJE online). In the first ana-

lysis we asked: ‘Does the more intelligent twin in each pair

live longer than their co-twin more often than expected?’

Within each pair we scored the brighter twin 1 and their

co-twin 0. Next, within each pair we scored each twin ‘1’

if they lived longer than their co-twin, whom we scored

‘0’. Then, using a cross tabulated contingency table we

examined the Pearson chi square statistic. This statistic

quantifies the extent to which the concordance of the two

dichotomous variables (lived longer / was brighter) differs

from the expected value under the assumption of statistical

independence. We re-ran the same contingency table pro-

cedure after stratifying the sample by zygosity (analysing

the MZ twins in one group and the DZ twins in the second

group). If aspects of the ‘unique environment’ mediated the

association between intelligence and lifespan, we would

expect the phenotypically brighter twin, within an MZ

pair, to live longer on average. On the other hand, if the in-

telligence-lifespan association is driven by genes, we would
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expect no difference in longevity stratified by the intelli-

gence of MZ co-twins who share the same genes.

However, common genetic factors that influence both

intelligence and lifespan would produce an over-represen-

tation of longer-living co-twins for the phenotypically

brighter twin within DZ twin pairs, who share on average

only 50% of genes.

We then turned to linear regressions. We calculated two

standardized within-pair difference scores: the age-at-death

difference and the intelligence difference score. We re-

gressed the age-at-death difference score (as the outcome

variable) on the intelligence difference score (as the pre-

dictor variable). The reasoning is as follows. First, if intelli-

gence and lifespan co-vary for genetic reasons, we would

expect that the lifespan difference within a pair of dizyg-

otic twins would increase as a function of the within-pair

intelligence difference. Second, MZ twins are genetically

identical; if we find a significant regression within the MZ

twins, we may infer that non-shared environmental effects

contribute to the association. We expect a significant re-

gression between the two difference scores, for genetic rea-

sons, only among the DZ twins. So, we examined the

linear regressions separately for the genetically identical

MZ twins, and for the DZ twins who share half their seg-

regating genes on average. We predicted a significant posi-

tive correlation between intelligence-difference and

lifespan-difference scores within DZ twins (but not in MZ

twins), exposing a genetic relationship between intelligence

and lifespan.

In the third and last analysis, we tested an additive gen-

etic (A) and unique environment (E) model to test for gen-

etic influence on both intelligence and lifespan. The model

specification is available as Supplementary data at IJE on-

line. The AE model assumes that differences within twin

families are caused by additive genetic and individual-

specific, non-genetic factors. We implemented this model

because of the repeated finding that the impact of shared

environmental factors on intelligence declines steadily,

even within childhood,17–19 and is rarely discernible from

adolescence onward.20–22 The model depends upon the

standardized coefficient from the linear regressions

described above, together with their standard errors (SE),

as well as the variances and covariance of the two traits.

In this model, the heritabilities of adult intelligence and

longevity are derived empirically. To examine the average

MZ/DZ difference across the three samples, we conducted

a random-effects meta-analysis run in MCMCglmm using

R23 across the three regression coefficients. This analysis

weights the study by the standard error of the regression

coefficients and fits an effect for study heterogeneity.

Tests for the impact of outliers (more than three stand-

ard deviations from the mean) were conducted on the data,

and on the difference scores in the combined sample. Since

there was no substantive change to the results, we retained

all the data to reduce the standard errors.

Results

Sex differences in life expectancy difference

scores

Although there was a trend towards greater mean life ex-

pectancy difference scores among women, it was not sig-

nificant: Swedish sample, F(1, 244)¼ 0.829, P¼ 0.363;

Danish sample F(1, 782)¼ 3.112, P¼0.078.

Combined samples and meta-analysis

When MZ and DZ twins were combined, we found that

the brighter twin lived significantly longer than his/her co-

twin in the pooled sample; this was also found in the

Swedish and Danish samples. This is shown in the contin-

gency table (Table 1). Raw counts are given in Tables S2–5

(available as Supplementary data at IJE online).

The within-pair effect was non-significant in the MZ

twins (P¼ 0.36), but significant in the DZ twins

(P< 0.001). The heritability of the cognitive composite (in-

telligence) estimated from the combined sample was 0.52.

The combined sample heritability of life expectancy was

0.28; this is closer to reports in the literature24 than our in-

dividual samples (available as Supplementary data at IJE

online).

Table 1. Contingency table results (v2 test for the hypothesis

that brighter twins live longer, shown separately for zygosity,

and within all samples

N pairs Pearson v2
1 P-value

(exact 2-sided)

Combined samples

MZ & DZ 1382 25.047 <0.001

MZ 614 2.170 0.141

DZ 768 29.308 <0.001

US military sample

MZ & DZ 342 0.000 0.995

MZ 201 0.107 0.743

DZ 141 0.171 0.679

Swedish SATSA sample

MZ & DZ 246 4.300 0.038

MZ 100 2.597 0.158

DZ 146 1.783 0.190

Danish LSADT sample

MZ & DZ 782 31.184 <0.001

MZ 305 3.189 0.074

DZ 477 32.720 <0.001
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The within-twin-pair analysis of the life expectancy dif-

ference regressed on the intelligence difference

was b¼ 0.04 (SE 0.05), P¼ 0.36 for the MZ twins. Among

the DZ twins it was b¼ 0.25 (SE 0.04), P< 0.001. Across

the whole sample, the regression gave b¼ 0.18, (SE 0.03),

P< 0.001. Figure 1 shows a scatterplot with a best-fit

regression line that shows the slope and direction of the

within-pair intelligence-life expectancy relationship.

The regression analysis shows that twin pairs of both

zygosities show the tendency of the brighter twin to live

longer. However, this trend is significantly higher

(P< 0.001) among the DZ twins, supporting genetic medi-

ation of the two traits (exact P values for the regressions

and the MZ/DZ difference in slopes for individual samples

are provided in Supplementary data, available at IJE on-

line). The random-effects meta-analysis of the MZ and DZ

regression coefficients across the three samples also con-

firmed a significant average difference (-0.20, SD¼ 0.10,

P¼ 0.04) between MZ and DZ pairs in the regression

coefficient.

The phenotypic correlation between intelligence and life

expectancy [estimated at 0.32 (SE 0.07) under an AE

model, shown in Table 2 below] was mostly explained by

genes (95%).The observed phenotypic correlation between

intelligence and life expectancy was 0.12.

Discussion

In the first quantitative genetic study to analyse the associ-

ation between intelligence and lifespan, we found evidence

(summarized in Table 2) that the covariance between

lifespan and intelligence is strongly influenced by genetic

factors. Finding three genetically-informative samples con-

taining a measure indexing intelligence, and where lifespan

was known, was very useful; however, there are important

limitations concerning our samples, discussed below.

We conducted several tests; they did not all yield signifi-

cant results, nor was every result consistent across the three

samples. Recruitment age, cognitive testing age and cogni-

tive tests varied among the samples; this matters for

Figure 1. MZ (on left) and DZ (on right) twins. Regression of within-pair lifespan difference z-score on within-pair intelligence difference z-score

(each datum¼one within-pair difference score) in combined samples.

Table 2. Summary of AE model results in combined and independent samples

Sample/N pairs AE model Genetic contribution

to phenotypic r

intelligence/lifespanh2 intelligence h2 lifespan Phenotypic r

intelligence/lifespan

Combined/1312 0.52 0.27 0.32 95.0%

US military/377 0.60 0.06 0.16 83.7%

Swedish/188 0.98 0.22 0.26 86.3%

Danish/784 0.20 0.28 0.35 85.3%

The genetic contribution to phenotypic r is given by the genetic covariance between intelligence and life expectancy scores

divided by the phenotypic covariance (both covariances are standardized).
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comparability. The Danish sample is the largest and a

driver of our key results, yet the empirical heritability of

cognitive ability was low in that sample, possibly a com-

bination of: tests that are less g-loaded (less correlated with

the common variance among tests) and less heritable; as-

certainment (twins entering the study had already survived

to age 70, which may increase their cognitive similarity re-

gardless of zygosity), and sampling variability. An ideal

sample (for our research question) would include twins

whose cognitive ability was measured in youth and again

at young adulthood, together with mortality data. By con-

trast, twins in the Scandinavian samples entered the study

at a later age. This means that we did not capture all the

variance in life expectancy differences that would occur in

the general population. Among the US veterans, the

within-pair contingency tables showed no influence of

genes on the relationship between intelligence and life ex-

pectancy; yet the regression analyses did support such a

genetic influence on lifespan, and the tests on the combined

sample were consistent with the meta-analysis across the

three samples.

Our results here concern same-sex pairs, which avoid

within-pair sex effects. Since women’s average life expect-

ancy exceeds men’s average life expectancy, larger studies

with earlier recruitment might find a greater mean among

women’s life expectancy difference scores.

We note that the causes of the association between intel-

ligence and lifespan may vary between ages (especially since

the causes of deaths differ by age). Further, cognition meas-

ured in older age is a combination of trait level of intelli-

gence and the amount of cognitive decline. Older age

recruitment in the Scandinavian samples will have caused

range restriction in life expectancy scores, which means that

the true size of the phenotypic correlation between cognitive

ability and life expectancy may be larger than reported here.

Any genetic factors that contribute to intelligence and

lifespan may operate indirectly via good health choices or

higher income which leads to better healthcare in some

countries. We note that these behaviours (intelligence, in-

come, lifestyle choices) are themselves associated through

gene-environment correlations. Such genetic relationships

between intelligence and health-promoting behaviours

have been reported.25 An alternative (and compatible) gen-

etic explanation relies on genetic pleiotropy. In cognitive

epidemiology, the question ‘what causes the link between

intelligence and lifespan?’ is unsolved and crucial. It mat-

ters for the tautological reason that evidence-based policy

depends on evidence. These findings matter because they

present a novel way of exploring socially important ques-

tions in public health. So far as we know, an empirical test

of a direct genetic link between intelligence and lifespan is

new to this study.

We have shown in our AE model that the small covari-

ance between intelligence and lifespan is almost entirely

genetic. Others have shown a phenotypic correlation be-

tween intelligence and brain resilience to systematic in-

sults,26 and genetic correlations between intelligence and

traits as diverse as: total brain volume;27 openness;28 con-

scientiousness;29 agreeableness;30 low hyperactivity;31 re-

action-time consistency or speed;32 height;33 and capacity

in the elderly to walk, run and climb stairs.34 Recent re-

search suggests that there is a general factor that predicts

rank on intelligence-type tasks not just in humans, but also

across species.35 Further research will reveal whether this

general factor of intelligence is genetically associated with

ecologically relevant attributes such as fertility, health and

lifespan in species that do not have wealth gaps or lifestyle

choices. If so, there may be an overarching genetic fitness

factor, that explains positive correlations across many brain

and body traits, which would be common across species.

Conclusion

The Nordic countries are exemplars of wealth redistribu-

tion. Evidence from them is often used to support the claim

that narrow wealth gaps promote health and life expect-

ancy.36 From a broad population-level perspective this

may be true. Yet our results show that the relationship be-

tween lifespan and intelligence (which predicts wealth,

even within advantaged families37) is mostly genetic. We

should be mindful that intelligence may mediate apparent

associations between levels of education, income or occu-

pation and morbidity and mortality. Genetically inform-

ative studies permit an individual differences perspective

that can illuminate surprising connections among the aeti-

ologies of these traits. Our results should be of interest to

epidemiologists and molecular geneticists. If these results

generalize, then alleles favouring intelligence may also fa-

vour lifespan even if the heritability of lifespan is low. This

is because evolution gains traction from even minute ad-

vantages; what matters is the robustness of the association

over generations, not the size of the advantage. Genetically

informative data have a critical role to play in cognitive

epidemiology and public health.

Supplementary Data

Supplementary data are available at IJE online.
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