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Abstract

Background Systolic blood pressure, total cholesterol and smoking are known predictors

of cardiovascular disease (CVD) mortality. Less is known about the effect of lifetime accu-

mulation and changes of risk factors over time as predictors of CVD mortality, especially

in very long follow-up studies.

Methods Data from the Finnish cohorts of the Seven Countries Study were used. The

baseline examination was in 1959 and seven re-examinations were carried out at approxi-

mately 5-year intervals. Cohorts were followed up for mortality until the end of 2011. Time-

dependent Cox models with regular time-updated risk factors, time-dependent averages of

risk factors and latest changes in risk factors, using smoothing splines to discover nonlin-

ear effects, were used to analyse the predictive effect of risk factors for CVD mortality.

Results A model using cumulative risk factors, modelled as the individual-level averages of

several risk factor measurements over time, predicted CVD mortality better than a model

using the most recent measurement information. This difference seemed to be most prom-

inent for systolic blood pressure. U-shaped effects of the original predictors can be ex-

plained by partitioning a risk factor effect between the recent level and the change trajectory.

The change in body mass index predicted the risk although body mass index itself did not.

Conclusions The lifetime accumulation of risk factors and the observed changes in risk

factor levels over time are strong predictors of CVD mortality. It is important to investi-

gate different ways of using the longitudinal risk factor measurements to take full advan-

tage of them.
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Introduction

Cardiovascular disease (CVD) risk factors have been

studied widely, but there is still a demand for advice on the

utilization of longitudinal risk factor measurements in risk

prediction. Most cohorts include only baseline measure-

ments with follow-up of outcomes using registers or other

means of data collection. Thus using only the baseline

measurements has been the primary approach in building

risk prediction models,1,2 resulting in challenges with un-

known risk factor changes in long follow-ups and inverse

associations immediately prior to death because of severe

diseases. Less attention is so far paid to taking advantage

of longitudinal risk factor measurements.

Recently, research has been done on utilizing longitu-

dinal risk factor measurements in risk prediction. The ef-

fect of visit-to-visit variability in blood pressure has been

shown to be associated with all-cause mortality and

stroke.3,4 In connection with a patient’s hospital death, it

has been found that using time-dependent risk factors im-

proves the predictive ability of a model compared with a

time-fixed (time-independent) model.5 Longitudinal meas-

urements have also been used to describe the relation of

population-level changes in risk factors to the risk of cor-

onary death.6

There have been some earlier efforts to utilize longitu-

dinal measurements by calculating individual-level changes

and averages of risk factors.7–9 Nevertheless, using only

linear effects of predictors may prevent researchers from

finding true, possibly nonlinear, effects of risk factors.

Categorization of continuous variables has sometimes been

used in order to overcome this problem,10 but it may be an

inefficient way of finding nonlinearities and therefore other

methods, e.g. splines, should be considered.11

Our aim is to predict CVD mortality using longitudinal

risk factor measurements and two individual-level vari-

ables derived from them, namely changes between the lat-

est two measurements, and time-dependent averages. We

also compare the predictive ability of models that use lon-

gitudinal measurement information differently. Data from

the Finnish cohorts of the Seven Countries Study are used

in the analyses. These data suit our purposes well, because

the cohorts have seven re-examinations carried out at

approximately 5-year intervals after the baseline measure-

ments in 1959, and are followed up for over 50 years.

Methods

Cohorts

The analyses were conducted using the Finnish cohorts of

the Seven Countries Study. These cohorts consisted of all

men who were born between 1900 and 1919 in two geo-

graphically defined rural areas located in Eastern and

South-Western Finland.12 The baseline survey was con-

ducted in 1959 and the re-examinations in 1964, 1969,

1974, 1984, 1989, 1994 and 1999. Information is avail-

able on individuals’ lifetime and the cause of death, up to

the end of 2011.

These two cohorts consist of 1711 men aged 40 to 59 at

the baseline. Characteristics of the cohorts are presented in

detail in Table 1. At the end of the follow-up period, 16

men were still alive and 850 had died from cardiovascular

disease (CVD). Mortality data were obtained from the

National Causes of Death Register through record linkage.

CVD deaths were defined as ICD-8 codes 390-458, ICD-9

codes 390-459 and ICD-10 codes I00-I99. The median fol-

low-up time from baseline to death or the end of the fol-

low-up was 23.1 years. For the purposes of our study, we

restricted the analyses to men who were examined at least

twice, which resulted in data on 1540 individuals.

Statistical analysis

In the modelling of the follow-up data with longitudinal

risk factor measurements, we applied time-dependent Cox

models13 where we used age as the time-scale.14,15 For con-

tinuous predictor variables, smoothing splines16 were used

to identify possibly nonlinear effects. Four degrees of free-

dom (three with change in cholesterol) were used for

splines to control the amount of smoothing. The propor-

tional hazards assumption of the Cox models was checked

using Schoenfeld residuals.16

As predictor variables we used classical chronic disease

risk factors and two variables derived from them: (i) latest

Key Messages

• Both long-term exposure to increased risk factors on the individual level and changes in classical risk factors predict

the risk of cardiovascular disease mortality.

• In particular, the cumulative value of systolic blood pressure is a stronger predictor than the most recent value.

• Simplistic use of longitudinal risk factor measurements in modelling may underestimate the importance of these.
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change and (ii) time-dependent average. Assume we have a

risk factor x and longitudinal measurements on it at time

points t(i), i¼ 0, 1, 2,. . .. In a regular time-dependent Cox

model, the baseline measurement xt(0) is used in the time

interval [t(0), t(1)], the second measurement xt(1) is used in

the interval [t(1), t(2)], and so on.

The latest change was calculated at individual level as

the difference of the latest two measurements. That is, the

value xt(i) – xt(i� 1) is used in the interval [t(i), t(iþ 1)]. The

time-dependent average was calculated at individual level

as a mean of the most recent and all previous measure-

ments. In other words, the value mean (xt(i), xt(i� 1),. . .,

xt(0)) is used in the interval [t(i), t(iþ 1)]. Both of these

derived variables are time-dependent. CVD death was the

end-point in all models. Four different approaches to

model the longitudinal risk factor information were

considered:

Model (a): Traditional time-dependent model in which

the risk factors are updated approximately every 5 years

to use the most recent risk factor measurements;

Model (b): Model (a) with individual-level risk factor

specific latest changes;

Model (c): Time-dependent model in which the risk fac-

tors are updated approximately every 5 years to use the

individual-level risk factor specific averages;

Model (d): Model (c) with individual-level risk factor

specific latest changes.

In each model, systolic blood pressure (SBP), body mass

index (BMI, kg/m2), total cholesterol, resting heart rate,

smoking status and physical activity were

considered. Smoking status (current smoking) is dichotom-

ous (yes/no), physical activity is categorical with three lev-

els (sedentary or invalid/light work/hard work) and all

other variables are continuous. Physical activity, which

was measured only in 1959, 1964 and 1969, was used as

an adjustment variable rather than a variable of direct

interest.

The time-dependent average was also calculated for

smoking, which resulted in a continuous variable and is in-

terpreted as the percentage of the follow-up time during

which the individual has been smoking. If a risk factor

measurement was missing, the previous observed value

was used in the modelling. The participation rate was high

in all examinations but declined overtime when members

of the cohorts grew very old (Table 1).

The model selection for Models (a)–(d) was carried out

so that in the beginning all appropriate variables were in

the model and smoothing splines were used with all con-

tinuous variables. Then, the variable or nonlinear compo-

nent of a spline with the largest p-value was dropped one

by one until each variable had a p-value less than 0.05.

When a nonlinear component of a spline was dropped, the

variable was treated as a regular continuous variable. All

analyses were carried out with the R statistical software.17

Cox models were fitted using the coxph function from the

survival package.18

When comparing the predictive ability of different mod-

els, the continuous version of net reclassification

Table 1. Characteristics of the follow-up data by examination yeara

Characteristics Year

1959 1964 1969 1974 1984 1989 1994 1999

Participation rate for

individuals alive (%)

98 97 97 96 92 86 87 68

Age for individuals

alive (years)

49.8 (5.5) 54.7 (5.5) 59.4 (5.5) 64.0 (5.4) 73.0 (5.1) 76.9 (4.7) 80.9 (4.1) 84.1 (3.9)

Age for participants(years) 49.9 (5.5) 54.7 (5.5) 59.4 (5.5) 64.0 (5.4) 73.0 (5.1) 76.8 (4.8) 80.9 (4.2) 83.5 (3.5)

Cumulative all-cause

mortality

0 117 282 486 945 1186 1393 1522

Cumulative CVD

mortality

0 41 110 209 480 616 713 777

SBP (mmHg) 143.8 (20.7) 139.4 (21.3) 147.6 (23.6) 151.3 (22.3) 154.0 (22.7) 155.1 (22.9) 151.1 (21.0) 142.2 (21.2)

BMI (kg/m2) 23.7 (3.2) 24.3 (3.6) 24.8 (3.9) 25.0 (3.8) 25.7 (4.1) 26.3 (3.9) 26.4 (4.1) 26.2 (3.3)

Total cholesterol (mmol/l) 6.7 (1.3) 6.8 (1.2) 6.9 (1.3) 6.6 (1.2) 6.1 (1.2) 5.7 (1.1) 5.5 (1.0) 5.7 (1.0)

Heart rate 67.7 (13.0) 68.5 (12.6) 67.3 (13.0) 70.7 (14.3) 67.9 (12.1) 68.3 (12.3) 70.0 (14.8) 69.7 (13.3)

Current smoker (%) 63 54 49 36 18 13 11 2

Physical activity (%)

(sedentary or invalid/light

work/hard work)

10/16/74 9/15/76 2/38/61 – – – – –

aValues for continuous variables are mean (SD).
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improvement (NRI)19 and integrated discrimination im-

provement (IDI)20 indices were used. These two indices

have become popular alternatives for using the area under

the receiver operating characteristic curve (AUC) since it

has been observed that the improvement in AUC between

two models is not so good in detecting changes in model

discrimination as expected.21,22

The NRI and IDI indices use predicted event probabil-

ities in their estimation. Here, 10-year predicted probabil-

ities for CVD death were used. They were obtained using

the appropriate Cox models, and as the interest was in the

prediction of CVD mortality, we excluded those individuals

who died from other causes during the prediction interval

from the calculations of the model comparison indices.

The NRI measures the amount of correct reclassification

when the predicted risk of CVD death is compared

between the ‘new’ and the ‘old’ models. A reclassification is

considered to be correct if an event obtains a higher pre-

dicted risk by the new model than by the old model or if a

non-event obtains a lower predicted risk. The NRI is esti-

mated as the proportion of correct minus incorrect

reclassifications among events, plus the proportion of cor-

rect minus incorrect reclassifications among non-events.

The IDI is the difference in discrimination slopes between

the two models. The discrimination slope of a model is

defined as the average predicted risk of events minus the

average risk of non-events. The IDI can also be seen as a

difference in average sensitivity minus average (1 - specifi-

city) between the models.

Results

Model (a) is a traditional time-dependent model, used as a

starting point in the modelling. Table 2 shows the results

for the model and Figure 1 illustrates the effects of continu-

ous variables on hazard. BMI seemed to have no effect on

CVD mortality, and is therefore not included in the model.

Nonlinear effects of SBP and cholesterol suggest that low

risk factor values would be associated with a high risk of

CVD death.

Adding the differences of the latest two measurements

as predictors to describe individual-level changes in risk

factors, we have Model (b). Now SBP is not a nonlinear

predictor any more (Table 2 and Figures 1 and 2), and the

effect can be considered linear. The change variables for

SBP, cholesterol, BMI and heart rate in this model indicate

that lowering risk factor levels predicts CVD death. It is

worth noting that even though BMI itself does not seem to

predict the CVD mortality in Models (a) and (b), the

change in BMI clearly predicts the risk.

The third model does not only update the risk factor

values when the new measurements become available, but

it also uses individual-level averages of the most recent and

all the previous measurements. These averages can be in-

terpreted to model the cumulative effect of risk factors ra-

ther than the effect of the current risk factor level. In this

Model (c) the change variables are not used, so this is com-

parable with Model (a). Model (c) shows that when using

the time-dependent averages instead of the regular time-

dependent variables, the effects of SBP and cholesterol can

be considered linear (Table 2 and Figure 1), unlike in

Model (a). Moreover, especially for SBP, the use of the

average seems to make it a stronger predictor.

Model (d) uses the averages of risk factors and change

variables. The results of Model (d) are presented in Table 2

and Figures 1 and 2. Again, the change in BMI predicts

CVD mortality although BMI itself does not. The differ-

ence between these models is that in Model (d) the change

in heart rate does not predict the risk.

The statistical significance of a risk factor does not ne-

cessarily tell much about its epidemiological relevance. To

understand better the importance of the predictors, the

rank-hazard plots23 were used to compare average and

change variables of SBP and cholesterol from Model (d)

(Figure 3). Both average variables seem to have steeper

lines than the change variables, so they are stronger pre-

dictors of CVD mortality and average SBP is stronger than

average cholesterol.

In the change in cholesterol values, the entire range

from the lower quartile to the upper quartile has virtually

the same risk of CVD mortality, but the values below the

lower quartile clearly have an increased risk (Figure 3).

The strange bend in the right tail of the change in choles-

terol can be ignored as it refers only to a few observations

and the related confidence interval is large, which is seen in

Figure 2.

The differences in the predictive ability of the presented

Models (b) and (d) were investigated using NRI and IDI in-

dices. All the estimates of indices are positive and their

confidence intervals indicate that Model (d) can separate

CVD death events and non-events better than Model (b)

(Table 3). Thus, the use of averages of risk factors usually

improves the model compared with the use of regular

time-dependent risk factors, suggesting that the cumulative

effects of the risk factors would predict the risk of CVD

mortality better than only the most recent information of

the risk factor levels.

Discussion

In this study, we presented different ways to use longitu-

dinal risk factor measurements in modelling the risk of

CVD mortality in a long-term follow-up study. A model

using the individual-level averages of risk factor
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measurements, representing the lifetime accumulation of

the risk, was shown to have a better predictive ability than

a model using only the most recent measurement informa-

tion. It was found that the partitioning of risk factor effects

between the recent level and the change trajectory can ex-

plain the U-shaped effects of the original predictors.

The approach employed in this paper belongs to the

field of life-course epidemiology,24,25 as we consider accu-

mulation and change trajectories of risk factors rather than

single measurements. We note that despite the long follow-

up, this study is restricted to adults over 40 years of age.

For example, Lynch and Davey Smith25 consider the

Figure 1. Models (a)–(d): log-hazard ratios (continuous lines) and 95% confidence intervals (dashed lines) for continuous variables except for the

change variables, which are presented in Figure 2. Small ticks at the bottom of each panel represent the observed values and help to identify outliers

causing wide confidence intervals.
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associations of early-life conditions with stroke and coron-

ary heart disease.

The strengths of this study are eight longitudinal risk

factor measurements at regular intervals and the 50-year

mortality follow-up. These data provide a good overview of

the individual-level risk factor profiles and their changes in a

lifetime. There are some limitations of the present study

related to the data as well. The baseline measurement was

carried out in 1959, so all the relevant risk factors known

nowadays were not measured. Also the development of

causes of death diagnostics and the medical treatment of

hypertension and high cholesterol may have some effect on

the results. However, the medication effects are reflected to

risk factor levels, and the role of risk factors in predicting

the changes in mortality is greater than the effects of inva-

sive treatments.26 Particularly if the main interest was to ob-

tain probabilities of CVD mortality, competing risks models

could be considered. However, in Finland the autopsy rates

are high and the quality of causes of death registering has

been shown to be good, especially in relation to cardiovas-

cular diseases.27–29 Several other diseases have the same risk

factors as CVD. It has been shown that the adjustment for

competing causes of death will reduce the risk of CVD mor-

tality, especially of older people and groups with less favour-

able risk factor profiles.30

In an earlier study, using a time-dependent model, BMI

did not predict a CVD incidence.2 In addition to this, it has

been observed that weight decrease is associated with high

CVD risk.31 In this study a concordant result was

observed, showing that even though BMI itself does not

predict a CVD risk, a change in BMI does. Decrease in

BMI in late life is usually related to frailty and morbidity

leading to higher mortality.32,33

In earlier studies from the Framingham Heart Study,

systolic blood pressure, total cholesterol and smoking have

been shown to be significant predictors of CVD.2 Our re-

sults also demonstrated the predictive power of these same

risk factors in traditional time-dependent models. Using

the accumulation of individual risk factors (average over

all previous measurements) provided new information

about the effect of traditional risk factors, demonstrating

the impact of the individual-level history of the risk factor

levels on the risk of CVD.

In a time-dependent model, the use of a measurement

carried out just prior to death may result in a misleading

Figure 2. Models (b) and (d): log-hazard ratios (continuous lines) and

95% confidence intervals (dashed lines) for change variables. Small

ticks at the bottom of each panel represent the observed values and

help to identify outliers causing wide confidence intervals.

Table 3. Net reclassification improvement (NRI) and inte-

grated discrimination improvement (IDI) indices with 95%

confidence intervals (CIs) comparing Model (d) with Model

(b). A positive index value indicates that Model (d) has better

predictive ability than Model (b)

Prediction

interval

(years)

NRI (95% CI) IDI (95% CI)

1964–73 0.283 (0.117, 0.449) 0.011 (0.006, 0.017)

1974–83 0.105 (�0.035, 0.245) 0.007 (�0.000, 0.015)

1984–93 0.190 (0.019, 0.361) 0.015 (0.005, 0.026)

1994–2003 0.087 (�0.207, 0.382) 0.015 (�0.009, 0.038)
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effect due to frailty and comorbidity.34–36 An illness can

lead to the lowering of, for example, blood pressure and

cholesterol, which causes an apparent negative relation be-

tween risk factors and mortality. In addition, if we do not

take into account that risk factor levels may vary over

time, and use only the baseline measurements, we encoun-

ter the regression dilution problem.37 Different adjustment

methods have been proposed to overcome this problem.38

This study demonstrated that when changes in risk factors

are used as predictors in a time-dependent model, the

spurious associations caused by frailty and comorbidity

can be eliminated.

This study confirms the value of longitudinal risk factor

information in risk prediction. The results imply that using

a simplistic method in handling longitudinal risk factor

measurements in a prediction model may produce mislead-

ing estimates. The traditional time-dependent Cox model

assumes that only the most recent risk factor level affects

the risk. This assumption may be too restrictive and pre-

vent researchers from understanding the true importance

of the risk factors. We recommend investigators to study

different ways to utilize the longitudinal risk factor infor-

mation. We found out that, especially with SBP, the long-

term individual-level average is a stronger predictor of the

risk of CVD death than the most recent measurement.

However, it remains a topic for further studies to investi-

gate in more detail with which risk factors it is worth using

the long-term average and with which the most recent

measurement is appropriate.

Conclusions

The risk of CVD mortality was predicted with individual-

level changes and long-term averages of classical risk

factors using the data from Finnish cohorts of the Seven

Countries Study. A model using long-term individual-level

averages of risk factors was shown to have a better predict-

ive ability than a standard time-dependent model using

only the most recent measurements. The results indicate

that it is important to investigate different ways of using

the longitudinal risk factor measurements to take full ad-

vantage of them.

Funding

The research of the first author was supported by the Emil Aaltonen

Foundation.

Conflict of interest: None declared.

References

1. Conroy RM, Pyorala K, Fitzgerald AP et al. Estimation of ten-

year risk of fatal cardiovascular disease in Europe: the SCORE

project. Eur Heart J 2003;24:987–1003.

2. Pencina MJ, D’Agostino RB Sr, Larson MG, Massaro JM, Vasan

RS. Predicting the 30-year risk of cardiovascular disease: the

Framingham heart study. Circulation 2009;119:3078–84.

3. Muntner P, Shimbo D, Tonelli M, Reynolds K, Arnett DK,

Oparil S. The relationship between visit-to-visit variability in

systolic blood pressure and all-cause mortality in the general

population: findings from NHANES III, 1988 to 1994.

Hypertension 2011;57:160–66.

4. Rothwell PM, Howard SC, Dolan E et al. Prognostic significance

of visit-to-visit variability, maximum systolic blood pressure,

and episodic hypertension. Lancet 2010;375:895–905.

5. Wong J, Taljaard M, Forster AJ, Escobar GJ, van Walraven C.

Addition of time-dependent covariates to a survival model sig-

nificantly improved predictions for daily risk of hospital death.

J Eval Clin Pract 2012;19:351–57.

6. Menotti A, Lanti M, Kromhout D et al. Forty-year coronary

mortality trends and changes in major risk factors in the first

Figure 3. Rank-hazard plots showing the relative importance of average and change variables of SBP and cholesterol in Model (d). The values of each

predictor are scaled evenly on the horizontal axis and the values of minimum, first quartile, median, third quartile and maximum are presented. Plots

are created using the measurement information of the year 1974 (15 years after the baseline). Reference hazards are the hazards related to median

values of average variables and zero values of change variables. Chol, cholesterol.

International Journal of Epidemiology, 2015, Vol. 44, No. 1 115

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/44/1/108/655709 by guest on 23 April 2024



10 years of follow-up in the seven countries study. Eur J

Epidemiol 2007;22:747–54.

7. Farchi G, Capocaccia R, Verdecchia A, Menotti A, Keys A. Risk

factors changes and coronary heart disease in an observational

study. Int J Epidemiol 1981;10:31–40.

8. Kahn HA, Dawber TR. The development of coronary heart dis-

ease in relation to sequential biennial measures of cholesterol in

the Framingham study. J Chronic Dis 1966;19:611–20.

9. Wilson PW, Hoeg JM, D’Agostino RB et al. Cumulative

effects of high cholesterol levels, high blood pressure, and cigar-

ette smoking on carotid stenosis. N Engl J Med

1997;337:516–22.

10. Sesso HD, Stampfer MJ, Rosner B, Gaziano JM, Hennekens CH.

Two-year changes in blood pressure and subsequent risk of car-

diovascular disease in men. Circulation 2000;102:307–12.

11. Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous

predictors in multiple regression: a bad idea. Stat Med

2006;25:127–41.

12. Karvonen MJ, Blonqvist G, Kallio V et al. C4. Men in rural East

and West Finland. Acta Med Scand 1966;180:169–90.

13. Fisher LD, Lin DY. Time-dependent covariates in the Cox pro-

portional-hazards regression model. Annu Rev Public Health

1999;20:145–57.

14. Korn EL, Graubard BI, Midthune D. Time-to-event analysis of

longitudinal follow-up of a survey: choice of the time-scale. Am J

Epidemiol 1997;145:72–80.

15. Thiebaut ACM, Benichou J. Choice of time-scale in Cox’s model

analysis of epidemiologic cohort data: a simulation study. Stat

Med 2004;23:3803–20.

16. Therneau TM, Grambsch PM. Modeling survi.val data: extend-

ing the Cox model. New York: Springer. 2000.

17. R Core Team. R: A language and environment for statistical com-

puting. Vienna: R Foundation for Statatistical Computing. 2013.

18. Therneau T. A Package for Survival Analysis in S. R package ver-

sion 2.37–4. 2013. http://CRAN.R-project.org/package¼survival.

(27 October 2014, date last accessed).

19. Pencina MJ, D’Agostino RB Sr, Steyerberg EW. Extensions of

net reclassification improvement calculations to measure useful-

ness of new biomarkers. Stat Med 2011;30:11–21.

20. Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS.

Evaluating the added predictive ability of a new marker: from

area under the ROC curve to reclassification and beyond. Stat

Med 2008;27:157–72; discussion 207–12.

21. Spitz MR, Amos CI, D’Amelio A Jr, Dong Q, Etzel C. Re:

Discriminatory accuracy from single-nucleotide polymorphisms

in models to predict breast cancer risk. J Natl Cancer Inst

2009;101:1731–32; author reply 2.

22. Wang TJ, Gona P, Larson MG et al. Multiple biomarkers for the

prediction of first major cardiovascular events and death. N Engl

J Med 2006;355:2631–39.

23. Karvanen J, Harrell FE. Visualizing covariates in proportional

hazards model. Stat Med 2009;28:1957–66.

24. Ben-Shlomo Y, Kuh D. A life course approach to chronic disease

epidemiology: conceptual models, empirical challenges and

interdisciplinary perspectives. Int J Epidemiol 2002;31:285–93.

25. Lynch J, Davey Smith G. A life course approach to chronic dis-

ease epidemiology. Annu Rev Public Health 2005;26:1–35.

26. Laatikainen T, Critchley J, Vartiainen E, Salomaa V, Ketonen

M, Capewell S. Explaining the decline in coronary heart disease

mortality in Finland between 1982 and 1997. Am J Epidemiol

2005;162:764–73.

27. Mahonen M, Salomaa V, Torppa J et al. The validity of the rou-

tine mortality statistics on coronary heart disease in Finland:

comparison with the FINMONICA MI register data for the

years 1983–1992. Finnish multinational MONItoring of trends

and determinants in CArdiovascular disease. J Clin Epidemiol

1999;52:157–66.

28. Pajunen P, Koukkunen H, Ketonen M et al. The validity of the

Finnish Hospital Discharge Register and Causes of Death

Register data on coronary heart disease. Eur J Cardiovasc Prev

Rehabil 2005;12:132–37.

29. Tolonen H, Salomaa V, Torppa J, Sivenius J, Immonen-Raiha P,

Lehtonen A. The validation of the Finnish Hospital Discharge

Register and Causes of Death Register data on stroke diagnoses.

Eur J Cardiovasc Prev Rehabil 2007;14:380–85.

30. Berry JD, Dyer A, Cai X et al. Lifetime risks of cardiovascular

disease. N Engl J Med 2012;366:321–29.

31. Strandberg TE, Strandberg AY, Salomaa VV et al. Explaining the

obesity paradox: cardiovascular risk, weight change, and mortality

during long-term follow-up in men. Eur Heart J 2009;30:1720–27.

32. Corrada MM, Kawas CH, Mozaffar F, Paganini-Hill A.

Association of body mass index and weight change with all-cause

mortality in the elderly. Am J Epidemiol 2006;163:938–49.

33. Dahl AK, Reynolds CA, Fall T, Magnusson PK, Pedersen NL.

Multifactorial analysis of changes in body mass index across the

adult life course: a study with 65 years of follow-up. Int J Obes

(Lond) 2014;38:1133–41.

34. Glynn RJ, Field TS, Rosner B, Hebert PR, Taylor JO, Hennekens

CH. Evidence for a positive linear relation between blood pres-

sure and mortality in elderly people. Lancet 1995;345:825–29.

35. Schatz IJ, Masaki K, Yano K, Chen R, Rodriguez BL, Curb JD.

Cholesterol and all-cause mortality in elderly people from the

Honolulu Heart Program: a cohort study. Lancet

2001;358:351–55.

36. Tilvis RS, Valvanne JN, Strandberg TE, Miettinen TA.

Prognostic significance of serum cholesterol, lathosterol, and

sitosterol in old age; a 17-year population study. Ann Med

2011;43:292–301.

37. Clarke R, Shipley M, Lewington S et al. Underestimation of risk

associations due to regression dilution in long-term follow-up of

prospective studies. Am J Epidemiol 1999;150:341–53.

38. Frost C, Thompson SG. Correcting for regression dilution bias:

comparison of methods for a single predictor variable. J R Stat

Soc A 2000;163:173–89.

116 International Journal of Epidemiology, 2015, Vol. 44, No. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/44/1/108/655709 by guest on 23 April 2024

http://CRAN.R-project.org/package=survival
http://CRAN.R-project.org/package=survival

	dyu235-TF1
	dyu235-TF2
	dyu235-TF3
	dyu235-TF4
	dyu235-TF5

