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The ever-increasing global epidemic of type 2 diabetes has

overwhelmed the capacity of healthcare systems and

economies in both developing and developed countries.1

Economic development, rapid industrialization and social

re-organization may play a critical role in driving the

diabetes epidemic, possibly due to discordant gene-

environment interactions.1,2 The evolution discordance

induced by rapid environment modifications is most

acknowledged in nutrition transition to ubiquitous refined

and processed foods, and in physical activity transition to

sedentary lifestyle — especially screen watching and driv-

ing.1,2 Compared with diet and physical activity, the im-

pact of environmental chemicals on diabetes development

has been grossly under-researched and their effects possibly

underestimated. By the end of the 20th century, however,

growing epidemiological and mechanistic evidence had

started to link environmental chemicals (both synthetic

and naturally occurring) to type 2 diabetes and obesity.3,4

In 2011, the U.S. National Toxicological Program at

the National Institute of Environmental Health Sciences in

the USA organized a workshop to systematically review

the epidemiological and experimental evidence on the rela-

tionship of environmental chemicals with obesity, diabetes

and the metabolic syndrome for a wide variety of chem-

icals including metals (arsenic), persistent organic pollu-

tants, phthalates, bisphenol A, non-persistent pesticides

and air pollution.4 Although the evidence has been updated

in recent reviews, it is far from establishing causality. A

major limitation is that most available studies are cross-

sectional, except for arsenic, hexachlorobenzene (HCB)

and total polychlorinated biphenyls (PCBs) for which

increasing prospective evidence is generally consistent with

an increased risk of type 2 diabetes.3

Among toxic metals associated with the risk of diabetes,

arsenic, a metalloid, has received special attention for

more than two decades since the publication in 1994 of a

cross-sectional study in the historically high-arsenic area of

south-western Taiwan.5 The research focus has since then

expanded from high to low-moderate arsenic exposures

and from occupational populations to general populations,

with increasing evidence supporting the diabetogenic ef-

fects of arsenic even at exposure levels below the World

Health Organization standard of 10 ppb in drinking water.

However, the debate on the causality of the observed asso-

ciations between arsenic and diabetes remains unresolved,

mainly because of limited quality assessment of arsenic and

diabetes outcomes and still relatively limited prospective

data.3,4

For other metals, the evidence is scarce. A handful of

studies are available for mercury, with inconsistent

evidence, and for cadmium, with evidence generally sup-

porting no association.3 In this issue of the International

Journal of Epidemiology, Liu et al. report a cross-sectional

association between nickel exposure, as measured in urine,

with the prevalence of diabetes in a representative sample

of adults aged 50 to 70 years from two main cities in

China, Beijing and Shanghai.6 This is the first study for-

mally evaluating the hypothesis of an association between

nickel exposure and the risk of diabetes, and the results

could represent a novel finding. However, we must exert

great caution in interpreting the findings of this single

study, especially given important limitations, namely the

cross-sectional design. Reverse causation is an inherent

limitation in cross-sectional studies, especially when the

exposure is based on urine analysis and the disease out-

come is potentially associated with kidney injury ranging

from glomerular hyperfiltration to impaired glomerular fil-

tration. The possibility of reverse causality in the exposure-

outcome relationship poses a serious challenge for re-

searchers investigating the association between diabetes

and urinary chemicals. For example, in Liu et al.’s study, it

would be important to report the association between esti-

mated glomerular filtration rate (eGFR) and urine nickel

concentrations and whether the eGFR is comparable be-

tween participants with and without diabetes. This infor-

mation, however, was not reported. In general, for diseases

that could affect kidney function, prospective evidence is

particularly important when exposure assessment is based

on urine biomarkers.

Another challenge is how to deal with multiple toxic

metals, or by extension with multiple environmental chem-

icals, that are potentially diabetogenic. Liu et al. men-

tioned that urine arsenic and cadmium levels were adjusted

for in sensitivity analyses yielding consistent results.6

However, effect modification by arsenic or cadmium ex-

posure was not approached systematically, including the

evaluation of additive or multiplicative effects. It would

have been useful to report the association of arsenic and

cadmium with prevalent diabetes in this population, since

the information was available and given the need to assess

multi-exposure. Residual confounding is an inherent threat

to the validity of any observational study. For instance,

higher nickel exposure may be attributable to higher

particulate air pollution, which has also been linked to the

development of diabetes, as nickel concentrations and par-

ticulate matter exposure can be correlated.7,8 Other sour-

ces of nickel exposure include electronic devices such as

laptops and cellphones.9 Clarifying the main source of

nickel exposure in the general population would be critical

to control residual confounding and perform bias

estimation.

Unlike arsenic, where the evidence at high levels of ex-

posure is generally consistent, no information is available

on a link between nickel exposure and type 2 diabetes in
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occupational populations or in highly exposed general

populations. Targeting prospective research studies in oc-

cupationally exposed populations in industries such as

mining, alloy manufacturing and production of nickel-

based batteries may be a practical and cost-effective

approach. Overall, well-designed prospective studies are

warranted to evaluate the joint effect between nickel and

other nutrients and toxicants and its impact on the risk of

diabetes. It is also fundamental to estimate the repeatabil-

ity of urine nickel measurements collected over time to jus-

tify the use of single urine nickel measurements, as

the half-life of nickel in urine is relatively short. As multi-

element analytical methods have become standard in metal

assessment, developing statistical methods to deal with

multi-exposures is critical.

With the publication of the study by Liu et al.,6 nickel

appears as a potential new chemical that was missing in

our list of environmental chemicals that may be related to

diabetes. At this point, the limited evidence available is in-

sufficient to evaluate this relationship. In one ecological

study, nickel concentration in the air was associated with

diabetes mortality.10 In two case-control studies, on the

other hand, serum nickel levels were similar between par-

ticipants with and without diabetes.11,12 The study by Liu

et al., however, highlights the possibility that a number of

diabetes-related environmental chemicals might have been

overlooked. With hundreds of new chemicals released

every year, and studies that tend to focus on the same

chemicals, it is important to acknowledge that new

approaches are needed that can identify a larger number of

environmental chemicals simultaneously while appropri-

ately preserving quality in exposure assessment and control

of bias, in particular confounding. Identifying environmen-

tal hazards for chronic disease such as diabetes is an urgent

need as modernization contributes to rapid changes in en-

vironmental exposures. Environmental chemicals could

also challenge the dynamic interplay with genetic, nutri-

tional and physical activity factors and alter public health

risk to chronic diseases, especially in countries with rapid

socio-economic growth and urbanization, such as China

and India.1
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