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Commentary: Models for longitudinal 
family data
W James Gauderman* and David V Conti

Cohort studies will become increasingly important in
understanding the aetiology of complex human traits.1 While
the longstanding approach of analysing cross-sectional data to
identify genetic and/or environmental factors for disease or
quantitative traits has resulted in some success, there have been
many inconclusive results and far too few replications. There
are recognized explanations that are often put forth for this,

including low power and heterogeneity across study samples.
However, a reason that is not often cited is that a single cross-
sectional examination of data may not capture the essential
aetiological mechanisms. For example, a specific variant
genotype might cause an increase in a trait value that cumulates
as a person ages. That is, a specific gene may affect the trajectory
of the trait over time. Thus, two studies, one of young-aged
subjects and the other of older-aged subjects, would likely come
to different conclusions with respect to that locus owing to the
different part of the gene–age trajectory that was examined. In
a similar manner, different genes may also act at different time
periods in the disease process, such as disease initiation or
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progression. In such situations, underlying genes may only be
identified through longitudinal studies that accurately capture
the dynamic nature of the phenotype.

The standard cohort study involves longitudinal follow-up of
individuals (unrelated subjects). Although this is an effective
design for studying measured factors (candidate genes and
environmental exposures), it does not permit estimation or
adjustment for unmeasured genetic or environmental factors
that are shared within families. Understanding the distribution
of traits with respect to shared genetic and environmental
factors is an important first step in the progression from
descriptive genetic epidemiology to targeted studies of specific
loci or genomewide searches using linkage or association
methods.

The paper by Burton et al.2 in this issue appropriately points
out the need to integrate longitudinal and family studies, and
discusses several advantages of combining these data types. By
basing their modelling framework on generalized linear mixed
models (GLMMs) and using a Bayesian estimation procedure,
they develop a flexible approach for estimating the fraction of
variance in both trait level and trait slope over time that can be
attributed to additive genetic and shared (within family)
environmental effects. Moreover, the model is applicable to
repeated quantitative or binary traits. This, combined with their
previous work for survival traits,3 encompasses a class of
models and estimation methods that should handle almost any
type of outcome one would collect in a longitudinal family
study.

In their analysis of systolic blood pressure in the Framingham
Heart Study data, Burton et al.2 estimated the narrow-sense
heritability for slope over time of only 9%, but a much larger
heritability (44.3%) for the intercept. As the authors point out,
the latter refers to the proportion of total variance attributable
to additive genetic effects at baseline. Care must always be
taken when interpreting what is meant by ‘baseline’. To provide
a context for understanding this issue, we show their linear
model for SBP:

SBPijk � �0 ��0ij � �T (Tijk � T*) ��Tij (Tijk � T*) � �Xijk � eijk,

where i, j, and k index family, individual, and measurement
number, respectively, T denotes age, and T* is a fixed age value.
Remaining terms include a vector of measured covariates (X)
and an error (e) that is assumed to be normally distributed with
mean zero. The authors set T* to 52.7 years, the mean age in the
sample. The parameters bT and bTij measure the overall average
slope of SBP on age and the subject-specific deviation in slope
from that average, respectively. The latter is treated as a random
effect, is modelled as a function of genetic and shared environ-
mental components of variance, and is the source of the estima-
ted 9% heritability in slopes. These slope parameters are
invariant to the choice of T* and estimate the change over the
time-period for which the longitudinal measures have been
obtained.

In contrast, what do the intercept parameters measure? Both
the overall average (b0) and subject-specific deviation (b0ij)
parameterize the mean SBP at baseline, where baseline refers to
the covariate profile at which all other terms in the model drop
out. In the above model, this is when age 5 T* 5 52.7 years and
each X has a zero value (e.g. female of average weight, height,

etc.). Therefore, the reported heritability of 44.3% for baseline
SBP is referable to the distribution of SBP at age 52.7 and
reflects cumulative heritability up to that age. It is important to
recognize that the intercept-based heritability is not invariant to
the choice of T*. In other words, one will get a different
estimated heritability for the intercept (mean SBP) with
different choices of T*. This fact can be used to advantage to
better understand the effect of underlying genes on longitudinal
trajectory. For example, one could run repeated analyses setting
T* to 0, 10, 20, etc. to estimate heritability at birth, age 10, age
20, etc. The estimated heritability at age 10, for example,
represents the cumulative effect of heritability at birth plus
genetic effects on the growth slope that occurred between birth
and age 10.

We note that the linear model above could be generalized
(e.g. using a linear spline model), to allow both the growth
slope and heritability estimates on slopes to vary over time. This
would be important for a trait such as lung function, which
increases rapidly through childhood and then decreases slowly
over time in adulthood. For this trait, one could imagine that
there might be different genetic influences in the growth and
decline processes. Studying the change in heritability across
ages might suggest the possibility of environmental factors that
act through time to enhance or suppress gene expression.

In the light of currently available technologies, one is unlikely
to be satisfied with only estimates of heritability. Instead,
investigators are likely to want to study candidate genes and
perform genome screens by association-based methods.
Certainly, having age-specific estimates of heritability in hand
should be viewed as a key step in designing an optimal study to
test specific genetic loci. However, one may be tempted to then
discard the family-based design in place of easier-to-conduct
case–control or cohort studies of unrelated individuals. In our
view, the family-based cohort study can still play an important
role in the context of gene-association studies. First, tests of
gene associations for trait-average and trait-slope based on
within-family comparisons will be free from biases owing to
population stratification. Second, one will have the opportunity
to conduct joint tests of linkage and association. Joint models
can yield a more powerful test than either a linkage or
association test alone, and can be useful for distinguishing a
marker from a true underlying trait locus.4 Third, one can
monitor estimates of heritability for both intercepts and slopes
as measured genes are added (as covariates X) to the model.
This would provide one way of determining how fruitful it
might be to continue searching for additional genes and may
suggest targeting additional searches to specific age groups.
Although, such extensions to measured genotypes can quickly
lead to complex models, the flexibility of the GLMM framework
and the ability of Bayesian estimation procedures to handle
large integrations make such extensions feasible, albeit
computationally demanding (see ref. 5 for an application to
measured genotypes using GLMMs and Bayesian estimation).

In summary, the work by Burton et al.2 and others (see ref.
6 for a summary) highlights the potential importance of
longitudinal family-based studies. These studies will be costly
and more difficult to perform than either a family-based cross-
sectional study or a longitudinal study of unrelated individuals.
However, the combination of these two designs is likely to pay
large dividends in our attempts to understand genetic and
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environmental determinants of complex human traits. The
longitudinal family-based design should be given careful
consideration as we plan new studies.
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