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In many countries routine vital statistics are of poor quality, 
and often incomplete or unavailable. In countries where vital
registration and routine health information systems are weak,
the application of verbal autopsy (VA) in demographic surveil-
lance systems or cross-sectional surveys has been suggested 
for assessing cause-specific burden of mortality. The technique
involves taking an interviewer-led account of the symptoms
and signs that were present preceding the death of individuals
from their caretakers. Traditionally the information obtained from
caretakers is analysed by physicians and a cause(s) of death 
is reached if a majority of physicians on a panel agreed on a
cause(s). The accuracy of physician reviews has been tested in
several settings using causes of death assigned from hospital

records as the ‘gold standard’. Although physician reviews of 
VA gave robust estimates of cause-specific mortality fractions
(CSMF) of several causes of death, the sensitivity, specificity and
predictive values varied between causes of death and between
populations1,2 and had poor repeatability of results.3

Arguments to introduce opinion-based and/or data-derived
algorithm methods of assigning cause of death from VA data are
based on both the quest for accuracy and consistency, as well as
the logistical difficulties in getting together a panel of physicians
to review what are often large numbers of records. However,
physician review performed better than set diagnostic criteria
(opinion-based or data-derived) given in an algorithm to assign
a cause of adult death.4 One promising approach to diagnose
disease status has been artificial neural networks (ANN) which
apply non-linear statistics to pattern recognition. For example,
ANN predicted outcomes in cancer patients better than a logistic
regression model.5 Duh et al. speculate that ANN will prove use-
ful in epidemiological problems that require pattern recognition
and complex classification techniques.6 In this report, we com-
pare the performance of ANN and logistic regression models
and physician review for reaching causes of adult death 
from VA.
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Background Artificial neural networks (ANN) are gaining prominence as a method of
classification in a wide range of disciplines. In this study ANN is applied to data
from a verbal autopsy study as a means of classifying cause of death.

Methods A simulated ANN was trained on a subset of verbal autopsy data, and the per-
formance was tested on the remaining data. The performance of the ANN models
were compared to two other classification methods (physician review and logistic
regression) which have been tested on the same verbal autopsy data.

Results Artificial neural network models were as accurate as or better than the other
techniques in estimating the cause-specific mortality fraction (CSMF). They
estimated the CSMF within 10% of true value in 8 out of 16 causes of death.
Their sensitivity and specificity compared favourably with that of data-derived
algorithms based on logistic regression models.

Conclusions Cross-validation is crucial in preventing the over-fitting of the ANN models to the
training data. Artificial neural network models are a potentially useful technique
for classifying causes of death from verbal autopsies. Large training data sets 
are needed to improve the performance of data-derived algorithms, in particular
ANN models.
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Methods

An overview of neural networks

Although often referred to as black boxes, neural networks can
in fact easily be understood by those versed in regression analysis
techniques. In essence, they are complex non-linear modelling
equations. The inputs, outputs and weights in a neural network
are analogous to the input variables, outcome variables and
coefficients in a regression analysis. The added complexity is
largely the result of a layering of ‘nodes’ which provides a far
more detailed map of the decision space. A single node neural
network will produce a comparable output to logistic regres-
sion, where a function will combine the weights of the inputs to
produce the output (Figure 1).

Combining these nodes into multiple layers adds to the com-
plexity of the model and hence the discriminatory power. In so
doing, a number of elements, each receiving all of the inputs
and producing an output, have these outputs sent as inputs to 
a further element(s). The architecture is called a multi-layer
perceptron (Figure 2).

The study population and field procedures of the VA data
used in this analysis are described elsewhere.1 In brief, data
were collected at three sites (a regional hospital in Ethiopia, 
and two rural hospitals in Tanzania and Ghana). Adults dying at
these hospitals who lived within a 60-km radius of the institu-
tion were included in the study. A VA questionnaire was admin-
istered by interviewers with at least 12 years of formal education.

The reference diagnoses (gold standard) were obtained from a
combination of hospital records and death certificates by one of
the authors (DC) together with a local physician in each site. 
A panel of three physicians reviewed the VA data and reached a
cause of death if any two agreed on a cause (physician review).

The method used to derive algorithms from the data using
logistic regression models has been described elsewhere.4 Each
subject was randomly assigned to the train dataset (n = 410) or
test dataset (n = 386), such that the number of deaths due to
each cause (gold standard) was the same in both datasets. If a
cause of death had odd numbers, the extra subject was included
in the train dataset. Symptoms (includes signs) with odds ratio
(OR) >2 or <0.5 in univariate analyses were included in a
logistic model and then those symptoms that were not signifi-
cant statistically (P . 0.1) were dropped from the model in 
a backward stepwise manner. Coefficients of each symptom
remaining in the model were summed to obtain a score for each
subject i.e. Score = b1×1+b2×2+…, where bixi are the log OR bi
of symptoms xi in the model. A cut-off score was identified for
each cause of death (included 16 primary causes of adult death)
that gave the estimated number of deaths closest to the true
number of cause-specific deaths, such that the sensitivity was at
least 50%.

We used the same train and test datasets used by Quigley 
et al. for training and testing an ANN. The data were ported to
Microsoft Excel™ and analysed using NeuroSolutions 3.0™
(Lefebvre WC. NeuroSolution Version 3.020, Neurodimension
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Figure 1 Schematic representation of a single node in a neural network

Figure 2 Schematic representation of multi-layer perceptron



Inc.1994. [www.nd.com]). All models were multi-layer percep-
trons with a single hidden layer and trained with static back-
propogation. The number of nodes in the hidden layer were
varied according to the number of inputs and network perform-
ance. A learning rate of 0.7 was used throughout with the
momentum learning rule. A sigmoid activation function was
used for all processing elements.

Model inputs were based on those used in the logistic regres-
sion study, with further variables added to improve discrimination
in instances when they improved the model performance.
Sensitivity analysis provided the basis for evaluating the role of
the inputs in the models.

For each diagnosis, the first 100 records of the training subset
were used in the first training run of each model as a cross-
validation set to determine the optimal number of hidden nodes
and the training point at which the cross-validation mean
squared error reached a trough. Thereafter the full training set
was used to train the network to this point.

The output weights were then adjusted by a variable factor
until the CSMF was as close as possible to 100% of the expected
value in testing runs on the training set. At this point the
network was tested on the unseen data in the test subset.

Weighted (by number of deaths) averages for sensitivity 
and specificity were calculated for each method. A summary

measure for CSMF was calculated for each method by summing
the absolute difference in observed and estimated number of
cases for each cause of death, dividing by the total number of
deaths, and converting to a percentage.

Results
Table 1 shows the comparison of validity of the logistic regres-
sion models versus the ANN models for estimating CSMF by
comparing estimated with observed number of cases as well as
sensitivity and specificity.

The CSMF was estimated to within 10% of the true value in
8 out of 16 classes (causes of death) by the ANN. In a further 
six classes it was estimated to within 25% of the true value. 
In the remaining two classes the CSMF was extremely low
(tetanus and rabies). The summary measure for CSMF favours
those methods that are more accurate on the more frequently
occurring classes and may mask poor performance on rare
causes of death. In this measure however, calculated from the
absolute number of over- or under-diagnosed cases, the neural
network method performed better than logistic regression models
(average error 11.27% versus 31.27%), and compared well with
physician review (average error of 12.84%). In the assessment
of chance agreement between ANN and gold-standard diagnoses,

ARTIFICIAL NEURAL NETWORKS FOR CAUSE OF DEATH CLASSIFICATION 517

Table 1 Comparison of performance of physician review, logistic regression and neural network models

Combined dataset Test dataset

Physician review Logistic regression Neural network

Causes of death Observed Est.a Sens.b Spec.c Observed Est.a Sens.b Spec.c Est.a Sens.b Spec.c Kappa

TB-AIDSd 148 151 76 94 71 78 65 90 77 66 90 0.55

Malaria 85 80 33 93 42 89 48 80 44 29 91 0.19

Meningitis 66 60 59 97 32 33 53 95 34 56 95 0.50

CVSe disorders 65 57 48 96 32 32 34 94 30 47 97 0.44

Acute abdominal conditions 55 65 69 97 27 18 37 98 29 48 96 0.42

Diarrhoeal diseases 51 58 61 96 25 30 48 95 31 60 96 0.50

Direct maternal causes 50 58 82 98 25 18 52 97 19 48 98 0.52

Neoplasms 34 36 50 98 16 24 19 94 14 6 96 0.03

Injuries 33 36 97 99.5 15 16 80 99 16 80 99 0.76

Hepatitis 32 14 34 99.6 16 10 0 97 19 6 95 0.01

Chronic liver disease 25 29 40 98 12 14 8 97 15 25 97 0.19

Anaemia 24 12 33 99.5 12 25 25 94 11 17 98 0.15

Pneumonia 23 19 39 98.7 11 14 27 97 13 27 97 0.23

Renal disorders 21 22 38 98 10 10 10 98 10 10 98 0.08

Tetanus 13 10 77 100 6 5 17 99 3 50 100 0.66

Rabies 7 7 86 99.9 3 4 100 99.7 4 100 0.86

Weighted averagef 58.95 96.39 43.98 93.01 45.32 94.72

Summary CSMFg accuracyh 12.84 31.27 11.83

a Estimated.
b Sensitivity.
c Specificity.
d Tuberculosis-autoimmune deficiency syndrome.
e Cardiovascular system.
f ∑ Sensitivity or specificity of each class × number of cases in each class/total number of cases.
g Cause-specific mortality fraction.
h ∑ Difference between observed and estimated cases in each class/total number of cases.

Figures in Bold: Estimated CSMF is within 10% of expected value.

Figures in italics: Estimated CSMF is within 25% of expected value.



the kappa value was >0.5 for the following classes: rabies
(0.86), injuries (0.76), tetanus (0.66), tuberculosis and AIDS
(0.55), direct maternal causes (0.52), meningitis (0.50), and
diarrhoea (0.50).

There was a trade-off between specificity and sensitivity, and
in some instances the neural network performed better than
other techniques in one at the expense of the other. Compared
to logistic regression, the networks performed better in both
parameters for tuberculosis and AIDS, meningitis, cardiovascular
disorders, diarrhoea, and tetanus. They produced a lower sen-
sitivity for malaria (compared with logistic regression), but a
higher specificity. The overall and disease-specific sensitivities
and specificities compared favourably with logistic regression,
but did not match the performance of physician review.

Discussion
Accuracy of CSMF estimates

One of the most significant findings of this analysis is the relative
accuracy in assessing the fraction of deaths that are due to spe-
cific causes, especially for the more frequently occurring classes.
The accuracy in this estimate does not always correlate with 
the reliability estimated by the kappa statistic. Care was taken 
to find a weighting for the output that would lead to a correct
CSMF in the training set. The choice of this weight is analogous
to selecting the minimum total score at which a case is defined
in the logistic regression models. This then led to surprisingly
good estimates in the testing set. It is a feature of the train and
test subsets however that the number of members in each class
is similar. Manipulating either subset so that the CSMF differed,
by randomly removing or adding records of the class in question,
did not alter the accuracy of the CSMF estimates if the number
of training examples for the class was not decreased in the
training subset. With less frequently occurring classes such as
pneumonia, decreasing the number of training examples in the
training set, reduced the accuracy of the CSMF estimate. This 
is essentially an issue of generalisation, and it is to be expected
that networks that are trained with fewer examples are less likely
to be generalizable. It is suggested that it is for this reason that
the CSMF estimates for the five most frequently occurring classes
are all within 10% of the expected values. It would be expected
furthermore that if the datasets were larger, that the general-
izability of the CSMF estimates for the less frequently occurring
classes would improve.

At the stage of data analysis the question can be asked as to
whether or not there is an output level above which class mem-
bership is reasonably certain, and below which misclassification
is more likely to occur. Looking at the tuberculosis-AIDS model
(n = 71), as well as the meningitis model (n = 32), and ranking
the top 20 test outputs in descending order by value (reflecting
the certainty of the classification), 13/20 of these outputs correctly
predict the class membership in both instances. The sensitivities
for the models overall were 66% and 56% respectively. The im-
plication is that without a gold standard result for comparison,
it would be difficult to delineate the true positives from the false
positives even in the least equivocal outputs. This is in keeping
with observations that different data-derived methods arrive at
their estimates differently. One study to predict an acute abdomen
diagnosis from surgical admission records demonstrated that
data-derived methods with similar overall performance correlated

poorly as to which of the records they were correctly
predicting.7

Mechanisms of improved performance

A single layer neural network (i.e. a network with only inputs,
and one processing element) is isomorphic with logistic regres-
sion. A network with no hidden nodes produced almost identical
results when comparing the input weights to the log(OR) for
the four inputs used in the regression model to predict malaria
as the cause of death. In those instances where the performance
of logistic regression and neural network models differ, it is of
interest as to know the mechanisms by which improvements
are made. The results from this study indicate that the differ-
ences in performance of the neural networks are achieved both
by improved fitting of those variables already known to be signifi-
cantly predictive of class membership, through the modelling of
interaction between them, and by additional discriminating power
conferred by variables that are not significantly predictive on
their own

The first mechanism was borne out in one of the meningitis
models in which the exact same inputs used in the logistic
regression model were used in the neural network model with
an improvement in performance. Exploring the sensitivity
analysis for cardiovascular deaths (Table 2), the network out-
puts are surprisingly sensitive to the absence of a tuberculosis
history, which was not strongly predictive by itself. Age above
45 years old was the seventh most predictive input in the regres-
sion model, whereas it was the input to which the neural network
model was second most sensitive. In the case of meningitis,
presence of continuous fever was more important in the
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Table 2 Comparison of the most important inputs for two data-
derived models for assigning cardiovascular deaths

Logistic regression model Neural network model

Ranka Input Rankb Input

1 Puffiness of face 1 Puffiness of face

2 Cough 3–14 days 2 Age >45years

3 Abdominal 
distension 
8–30 days 3 No weight loss

4 No weight loss 4 Abdominal distension 8–30 days

5 No jaundice 5 History of hypertension

6 History of 
hypertension 6 No history of tuberculosis

7 Age >45years 7 No jaundice

8 No recent surgery

9 Pallor

10 No stiff neck

11 Cough .3 weeks

12 Shortness of breath

13 No chronic diarrhoea

14 No productive cough

15 Chest pain

16 Wheeze

17 No Continuous fever

a As determined by the log (odds ratio) for each input.
b As determined by sensitivity analysis in which the standard deviation of the

output response as the input is varied, is divided by the standard deviation
of the input.



regression model, whilst presence or absence of recent surgery
and abdominal distension were more significant in the ANN
model (Table 3). The network has mapped relationships between
the inputs that were not predicted by the regression model.

Effect of size of dataset

Both data-derived methods stand to benefit from more training
examples. In the regression models, some inputs not currently
utilized may yield significant associations with outputs when
larger datasets are used. With enough nodes and training time,
it was possible in the course of this analysis to train a neural
network to completely map the training set with 100% sen-
sitivity and specificity. However, this level of sensitivity and
specificity was not reproduced when these models were tested
in the test dataset. What it did demonstrate is the ability of 
the method to map complex functions. The key point is one of
generalizability. In the models presented above, training was
stopped and the nodes limited to ensure that the generalizability
was not compromised. With more training examples, it is likely
that the networks would develop a better understanding of the
relationships between inputs and outputs before over-training
occurs. Arguably, the neural network models would stand to
improve performance more than the regression models should
larger training sets be available. However, further training may
not achieve algorithms of sufficiently high sensitivity and spe-
cificity to obviate the need for algorithms with particular operating
characteristics suitable for use in specific environments.

Physician review

Only 78% of the reference diagnoses were confirmed by lab-
oratory tests. Since 22% of the reference diagnoses were based
on hospital physicians’ clinical judgement, it is not surprising
that physician review of VA performed better than the other
methods. Nevertheless, physician review remains the optimal
method of analysis, as far as overall performance is concerned,
for gathering cause-specific mortality data as good as the data
produced by routine health information systems.1 The technique
by which physicians in this study came to their classification
differed considerably, as they made extensive use of the open
section of the questionnaire from which information was not
coded for analysis by the other techniques. Interestingly though,

other methods are able to come close if the CSMF is used as 
the outcome of choice, as indeed it often is. Thus ANN or logistic
regression models based algorithms have the potential for
substituting physician review of VA.

Limitations of the technique

At various points we have alluded to some of the difficulties and
limitations of using neural networks for the analysis. These are
summarized in Table 4.

Even with sensitivity analysis, we had no way of working out
which were going to be the most important inputs prior to
creating a model and conducting a sensitivity analysis on it.
There is some correlation with linearly predictive inputs that
helps in the initial stages.

Determining the weighting for the output for providing the
optimum estimate of the CSMF was time-consuming. The soft-
ware provides an option for prioritizing sensitivity over specificity,
but no way of balancing the number of false positives and false
negatives that would give an accurate CSMF estimate.

Designing the optimal network topology requires building
numerous networks in search of the one with the lowest least
mean squared error. The number of hidden nodes, inputs and
training time all affect the performance of the network. Whilst
training is relatively quick compared to the many hours it took
to train ANN in the early days of their development, it is still
time-consuming to build and train multiple networks for each
model.

Cross-validation to prevent over-training required compromising
the number of training examples to allow for a cross-validation
dataset.

Sensitivity and specificity of the ANN algorithms were not
high enough to be generalizable to a variety of settings. Further-
more, the accuracy of individual and summary estimates of CSMF
obtained in this study could be due to the similarity in the CSMF
between the training and test datasets. Thus large datasets from
a variety of settings are needed to identify optimal algorithms
for each site with different distributions of causes of death.

Conclusions
Classification software based on neural network simulations 
is an accessible tool which can be applied to VA data potentially
outperforming other the data-derived techniques already
studied for this purpose. As with other data-derived techniques,
over-fitting to the training data leading to a compromise in the
generalizability of the models is a potential limitation of ANN.
Increasing the number of training examples is likely to im-
prove performance of neural networks for VA. However, ANN
algorithms with particular operating characteristics would be
site-specific. Thus optimal algorithms need to be identified for
use in a variety of settings.
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Table 3 Comparison of the most important inputs for two data-
derived models for assigning death due to meningitis

Logistic regression model Neural network model

Ranka Input Rankb Input

1 Stiff neck 1 Stiff neck

2 No cough 2 Cough

3 No pallor 3 Recent surgery

4 Continuous fever 4 Pallor

5 Stiff body 5 Abdominal distension

6 Injury/accident

7 Severe loss of weight

8 Body stiffness

9 Tuberculosis

a As determined by the log (odds ratio) for each input.
b As determined by sensitivity analysis in which the standard deviation of the

output response as the input is varied, is divided by the standard deviation
of the input.

Table 4 Limitations of the artificial neural network technique

Selecting inputs is not straightforward

Prioritizing cause-specific mortality fraction over sensitivity or
specificity is a manual process

Designing optimal networks for each cause of death is time-consuming

Sensitivity and specificity may be not high enough for the algorithms
to be generalizable to a variety of settings
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KEY MESSAGES

• Artifical neural networks have potential for classifying causes of death from verbal autopsies.

• Large datasets are needed to train neural networks and for validating their performance.

• Generalizability of neural network models to various settings needs further evaluation.


